等距离平均速度、等溶质增减溶剂,等发车前后过车难题。
调和平均数(harmonic mean)又称倒数平均数,是总体各统计变量倒数的算术平均数的倒数。调和平均数是平均数的一种。但统计调和平均数,与数学调和平均数不同,它是变量倒数的算术平均数的倒数。由于它是根据变量的倒数计算的,因此又称倒数平均数。调和平均数也有简单调和平均数和加权调和平均数两种。
在数学中调和平均数与 算术平均数都是独立的自成体系的。计算结局前者恒小于等于后者。 因而数学调和平均数定义为:数值倒数的平均数的倒数。但统计 加权调和平均数则与之不同,它是 加权算术平均数的变形,附属于算术平均数,不能单独成立体系。且计算结局与加权算术平均数完全相等。 主要是用来解决在无法掌握 总体单位数( 频数)的情况下,只有每组的变量值和相应的标志总量,而需要求得平均数的情况下使用的一种数据技巧。
1.区别
算术平均数和调和平均数是平均指标的两种表现形式。算术平均数和调和平均数并非两类独立的平均数;算术平均数和调和平均数的数值之间并无直接关系,也不存在谁大谁小的难题;不能根据同一资料既计算算术平均数,又计算调和平均数,否则就是纯数字游戏,而非统计研究。
2.关系
算术平均数、调和平均数、几何平均数是三种不同形式的平均数,分别有各自的应用条件。进行统计研究时,适宜采用算术平均数时就不能用调和平均数或几何平均数,适宜用调和平均数时,同样也不能采用其他两种平均数。但从数量关系来考虑,如果用同一资料(变量各值不相等)。
计算以上三种平均数的结局是:算术平均数大于几何平均数,而几何平均数又大于调和平均数。当所有的变量值都相等时,则这三种平均数就相等。它们的关系可用不等式表示:H≤G≤X
3.特点
调和平均数具有下面内容几许主要特点:
①调和平均数易受极端值的影响,且受极小值的影响比受极大值的影响更大。
②只要有一个标志值为0,就不能计算调和平均数。
③当组距数列有开口组时,其组中值即使按相邻组距计算,假定性也很大,这时的调和平均数的代表性很不可靠。
④调和平均数应用的范围较小。在实际中,往往由于缺乏总体单位数的资料而不能直接计算算术平均数,这时需用调和平均法来求得平均数。